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Summary

It is proposed lo develop a generalised sequential sampling procedure
y and evolve a technique of generating estimators for any sequential

sampling system. The procedure suggested putsat our disposal a number
of estimators. The problem of choice among different estimators needs
further discussion and in most cases extensive empirical studies would be
necessary to arrive at the best or the near best estimator. A particular
general estimator given by the generating technique happens to include
most of the estimators commonly used in practice so that these general
estimators may be taken as an acceptableestimator and used on all such
occasions where the efficiency of any particular estiihator is doubtful.
Necessary illustrations havebeen done to test the veracity of the method.

Introduction

Roy and Chakravarty [8] and Godambe [2] gave admissible estimators,
Hanurav [3] applied admissibility concept to sampling theory. Murthy
and Singh [5], Joshi [4], Prabhu-Ajgaonkar [7] and other contributed on
best and admissible estimators with fixed-sample size only. Singh [9] has
applied this concept with some modifications to sequential sampling, and
Chaudhary and Singh [I], and Singh and Singh [10] have discussed some
more generalizedsequential estimators. Anew line of acceptable sequential
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estimators has .been presented by Singh and Singh [11]. In the present
study an attempt has been made to extend these ideas further to arrive at
an exact generalization of sequential sampling structure and generate
acceptable generalised estimators.

Definition 1.1. Let a finite population n consist N distinguishable
units Ui associated with a real variate yi,i = 1,2, ... ,N. A parameter
6(= 9 = iyi, y2, ..., yAr) is a point in the Euclidean space or class of
point sets (for brevity class A). Usually the problem is to estimate 0 on
the basis of individuals i sampled from the population D and the values
yi associated them, i.e., on the basis of j(j, js e s) where s is a subset of
HJdrawn with a given sampling design p.

I • - «

Sampling Design: is any function p on A, the set of all possible subsets
of 5 of such that p (s) > 0,"^ p (s) = I, s e A.

Probability Field: consider a non-negative function P defined for every
combination (j'/i, y y^n) of s^. A probability measure may be con
structed in which the combination {yjityja, . . . , y^n) will be sampled with
probability proportionate to P(.yiu ya, • • • . y]n) over the combination
such that S f = 1 and it will be referred as a probability field (Q).

Definition 1.2. Parametric Function: Let us consider the parametric
functions defined by Singh (1977) say, 0(= 0 (y)) that can be expressed
over the class A, i.e., a more general method to express a parametric
function may be

0= S AiTt f(ai) (1.1)
OieA

where /(a.) is a single-valued set function defined over the class A, S
aieA

is the summation over all sets 'at' belonging to class A, is a probability
measure defined over in the class A, and Ai is some adjustment constant.

Definition 1.3. Sequential Estimator: A 'statistic' t disfined over the
probability field Q is a function over the saraple s. A statistic used to
estimate a parametric function 0 is called an estimator of 0 and a most
general form of a linear estimator may be

S f(ai)Hdi,s)l S <f>{aus)_ (1.2)
Oifs

where <l> (ajs) is a probability measure defined over a point with ai in s. In
case S (j>{ai, s) = 1, then the estimator t is called an unbiased estimator.

ttiSS
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The estimator (1.2) may also be as

t=^ -2 f{ai)piai,slEai)l ^ p{ai,slEa) ' (1.3)
UiiS fliW

A where Eoi is an event depending on the occurrence of the set 'oi in the
sample s and p (au sjEa^ is a probability measure for mwhen Eai has
occurred.

Definition 1.4. Sampling System: It may,be considered as the speci
fication of all possible samples alongwith their probability fields over the
combination ofunits in the sample v/ith reference to 6, i.e., it is a combi
nation of estimators of ordered sequence of samples 5 froin U with prob
ability field (Q) symbolically, F = F{t, Q).

Definition 1.5. Sequential Decision Rule: Before deciding how the
sampling process will terminate, some terms used within the text may be
defined: .

Asequential decision rule is a pair {4>, S) in which 4' is a stopping rule
and S is a terminal rule.

Stopping Rule: A stopping rule is a sequence of function

y Hy) = (< '̂0, Myi,^y2), •••) (i-^) '

with <l)}{yi, 3^2, , y}) such that 0 < < 1for all j. Where <!>} stands
for conditional probability that the experimenter will cease sampling,
given that he has taken j observations.

Terminal Rule: A terminal rule is a sequence of functions

SC;') = (00. Si (^i), 7,), . . .) for ally. (1.6)

is a sequential terminal rule for a statistical decision problem in the
probability distribution a = field for which expected lose £(0, (<j>, 6)) is
finite.

Risk Function: The risk function of a sequential decision rule (^, S) is
the expected value of the risk when 0 is the true value of the parameter
and will be denoted as d = d (0, (0., S)).

Sampling Structure: A sampling system F alongwith its risk function d
defined over the probbility field (Q) is called a sampling structure for
estimation of 0, symbolically, D = D{F, d) = (f, Q, d).
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A sampling structure D is said to be unbiased if t is an unbiased esti
mator of 6. •

A sampling structure D is said to be ultimate acceptable if Ms a con
sistent and minimum risk unbiased estimator (MRUE). If the risk of Dx
is smaller than that of D^, i.e., di < then issaid to be an acceptable
estimator.

2. Sequential Algorithm

A sequential algorithm Si can be defined to generate a sampling
structure.

{p{Ui), q{sn), rUn, t/j)) (2.1)

where p is a probability measure on Ui

such that p{Ui) > 0 for 1 < i < m

and S p{Ui) = 1
ies

q defines a sequential sample of size n lying in (0, 1) and r is defined as
a probability measure on the population HJ for which

q {Sn) = 0 such that r(j„, Ui) > 0

and S r(j„, Ut) = \
Us

Using the algorithm si the sequential system runs as follows.
The first unit is selected from u according to the probability measure

Pi. If the sample thus obtained is Si = {f/J, jj is then imputed in q and
the value is noted. Next a binomial trial is conducted with a probability
of q{sx). If the trial is a failure, the drawing is terminated and Si is taken
as the sample. Otherwise a second unit is drawn from U according to the
measure r(.5i, U^. Let the sample of size 2 be Ja = {J/i, U^. Again is
imputed in q and value is noted. Another binomial trial is conducted with
probability of success q{sz). If the trial results in a failure, the drawing is
terminated and is taken as the sample, otherwise a third unit is drawn
from U using the measure r{s2, U^) and so on. The sequence of sampling
continues for which q{sn) = 0.

Actually we have defined a general form of sampling structure for which
a sampling system has been prepared. Corresponding to probability field
Q the probability measure p{Ui) has been created, similarly q{sn) defines

>
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the risk function d of D. The sequential estimator has been defined by
r(sn, U„). Thus a complete samplingstructure has been established.

Theorem 2.1. The parametric function defined in the relation {1.1) can
be estimated unbiasedly by the estimator (1.2) if, and only if, each set 'aC is
contained in atledst one sample s in the sampling structure D.

Proof, (a) The condition is necessary.
Suppose that set 'aC is not included in any sample s of D. As defined

in (1.1), the parametric function is estimable by the estimator (1.2) where
4>(ai, s) is some function of s and ai.

Because is not included in any sample and therefore pis, ai) shall be
Zero. Hence there is no estimator. Thus proved that the condition is

, necessary.

(b) The condition is sufficient.
If t is an unbiased estimator of 0, then

£(0=S ^f(a)p(s,ai)
seA O/es

Y

Where S p(s, ai) = 1 i.e., ai is included in the sample and the class A
OiSS

alongwith the probability field defined completely. Hence the condition is
sufiScient.

Theorem 2.2. An unbiased estimator of the variance of the estimator
given by the relation (1.2) can be obtained if and only if each set a, U as is
contained in at least one sample s in the sampling structure D.

Proof: We know that the variance of the estimator (1.2) may be
written as

V{t) = E(t^) - 02

Thus it is sufficient to estimate t^ unbiasedly when an unbiased estimator
of V(t) is required.
- We know that

t^ = SZ/(flO/(a/) i>{s, ai) i>(s, a,) (2.2)
I J

Thus it follows directly from the theorem (].l) that an unbiased esti
mator ofis possible if and only if every set g a,) is included jn
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least one sample of D. Hence an unbiased estimator of V(t) is given by ^

V(i) - - S/(flO /(a/) Hs, Oi U a,IS ^s, Oi U a,) (2.3)
ij iJ

with the condition that

S <^.(5, fli U fl,) = 1
''j

3. Acceptable Generalized Estimators

' Let Sor be a set of elements of taking into account the ,'order' and
'repetition' of the units. The subscripts,'o' and 'r' are used,to denote the
order and repetitions of the units respectively. Let Sor be the class of all
such sets Sor, i.e., it may be considered the sample space. This together
with a probability measure 7r(jor) gives rise to a sampling scheme. If y be
a statistic then the sampling system is defined over the sampling scheme.
Sample units arranged in the ascending order of their unit indices form
an 'order statistics' which may be written as yor = bd), J'u), . . . , J(7i),
. . .]. This 'order statistic' is alwaysgiven by a sequential sampling scheme.
Another order statistic yor = bd), 3^(8) .V(r). • • • ] forms a sufiBcient
statistic if all the units are distinct. „

Let Yor. be an unbiased estimator which takes into account the order
and the, repetitions of the units, that it may be written as

Tor ~ S 71(0?) Y(or), (3.1)

Further if only the repetition is taken into account estimator is given by

Yf S 7t(or) J'(0r)/2 '̂ (or) (3.2)

We can proceed to improve it by ignoring the repetitions of the" units
and defining a new estimator which is based only on the distinct units in
the sample.

•\r)
(3.3)

Another approach may be t^ken by considering the order and ignoring
the repetitions of the units in which the estimator may be taken as Yg
based on the sample Sq, then another estimator based on the ordered
samples corresponding to Sq is defined by

= SYo "o/^S' (3.4)

>

y
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For the sake of convenience, let us consider the case in general. Let s be
the sample of n units with or without order of units or with or without
replacement (repetitions) or both, as the case may be. Let S be the corres-

—^ ponding sample space and the probability ofgetting the sample sbe tt, > 0.
It may be noted that s is being used here to denote jor, So, Sr or s, as the
case may be, without any loss of generality, it may be assumed that each
sample s consists of atleast one set 'a'. Now with the application of
Theorems (2.1) and (2,2) it can be shown that these estimators are
unbiased with measurable variance. Further if these estimators can be
written in. the form as given in (1.3), then sampling will terminate. It
should be noted that for the estimators to be useful in practicethe terminal
event Ea should be so specified that it would be possible to calculate the
risk function from the information available about the population, the
sample and the sampling system.

The technique of generalised estimators given in (1.3) shows that, given
any sampling scheme, one can derive a numberof unbiased estimators by
defining the event Eai in various ways. We may choose one of them by
taking into consideration cost and efiSciency. In other words, Ea is
another way of defining the risk function and thus it is one of the
approaches to decide the structure D. This technique' systematizes the

y. problem ofgetting the unique sampling structure.

4. Numerical Illustration

Let the example taken by Murthy [6] (p. 106) be examined. He has
drawn a random sample of size 10 from a population of 128 villages. The
128 villages are.given running serial numbers from 1 to 128 so that each
village is associated with one and only one of these numbers. A number
of characteristics has been discussed and the estimates of the population
mean have been obtained by simple random sampling with and without
replacement with equal probability notions, which can be seen in the
reference. With this equal probabilitynotion, we now attempt to illustrate
the idea of sequential sampling structure discussed in this paper. Here it
is assumed that both the random methods are sequential methods with
fixed stages. Corresponding to the sampling structure notion given in this ,
paper, the probability space is equiprobable and is well defined at every
stage of the sample. Using the sequential estimators discussed by Singh
[9] we may define the risk function as

= a + S Ci + AL(n)
F=1
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where a is the over-head cost,

a is the cost per unit,

Ais the constant, and }-'•
L(n) is the loss function of the sampling structure D.

And thus the stopping and terminal, rules of the structure are defined.
The estimators taken for illustration are:

yor = sequential sample mean with order and repetition,

j>o = sequential sample mean with order ignoring repetition,

j>v = sequential sample mean with r distinct units.

V

S .

_ / yo ^
E{r) E(r)

ryn = random sample mean with replacement and with fixed size n,

= Random sample mean without replacement and with fixed ^
size w,- , '

s(j) = denotes the standard error of corresponding mean j>. , '

By referring to random numbers there, thefirst 10 three-digited numbers,
which form the sample, are 112,059, 112, 116, 124, 090, 037, 078, 092,
062 and with slight modification wehavetaken them as cost per sampling

-unit i.e. 11.20, 5.90, 11.20, 11.60, 12.40,9.00, 3.70,7.80,9.20, 6.20respect
ively. It may be ^oted that in the sample selected above, which gives
sequential sample with replacement, thevillage with serial number 112 has
figured twice. For sampling without replacement, the thirddraw which is
a repetition, has been dropped and to make a sample of size 10, a further
draw has been made by taking the next random number in the sequence,
which comes out to be 077. Let us take in the risk function, a = 100,
A= .10 (say), a is already assumed and L(n) be the standard error of the
estimator or the coefficient of variation as the case may be. The results of
different characteristics are presented in appendix I (Tables 4.1 to 4.4).

Herethe stopping rule of thesampling structureis: Stopsampling when
the c.v. or the variance (or standard error) is the least value among all the •
available results. The terminal rule may be defined as: Terminate sampling
when it further increases or the risk function (or the budget) exceeds the
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given limit or the required number of distinct .units are obtained in the
sample. r fu

From the Table 4.1, we find that the standard error of the mean tor tbe
value «= 8 is the least ofall the values and that it increases as n increases.
Hence we suggest to terminate further sampling for the system F{y, Q) at
the sample size 8. Hence y is an acceptable estimator for the sampUng
structure D. A similar inference may be drawn for the Table 4.2.

We define dififerently the stopping and terminal rules for-the sampling
structures in Tables 4.3 and 4.4. The stopping rule is; Stop sampling when
(i) the coefficient of variation is the least value among all the available
results sequentially. The terminail rule is;

(i) if the budget exceeds, or (ii) the value c.v. or risk function increases
further as the sample size increases. From the results in Table 4.3, we
suggest to terminate sampling when the c.v. is .45, i.e., «= 7gives the
optimal sample size and the estimates given for this value are equally
acceptable. In Table 4.4 we recommend to terminate sampling at the
sample size m= 9, as a further increase in sample will entail to increase
the risk function of the sampling structure D. With the help ofthese
results we conclude that the sequential sampling structure always gives
acceptable estimators and they are more serviceable than the estimators

Y given by the random sampling scheme. ,
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APPENDIX

TABLE 4.1—SHOWINO THE RESULTS OF THE CHARACTERISTIC—NUMBER OF PERSONS IN 1951 CENSUS

AT = 128. y = 3243, S = 1953; ^7io = 1703, Jip) = 342. = 222.40.= 1878, = 317, d(iio) = 216.40 o

1 1 11.20 695 695 — — 695 — 695
1

2 , 2 5.90 1693 1169 547.3 171.83 1169 1386.3 ; 255.73 1173 1391.0 256.20

3 2 11.20 695 1011 656.0 193.96 1169 1134.1 241.71 785 1147.9^ 242.69

4 3 11.60 2639 1448 466.1 186.51 1659 984.1 238.31 1258 1997.5 239-65

5 4 ^ 12.4© 1577 1449 366.3 188.93 1638 88i.9 240.49 1331 898.3 242.13 .

6 5 9.00 1146 1399 366,6 197.96 1540 806.6 241.96 1308 825.6 243.86

7 6 3.70 2654 1578 320.5 197.05 1727 748.2 239.82 1514 . . 769.4 241.94

8 7 7.80 1010 1507 286.2
\

201.42 , 1623 701.2 242.92 1459 724.4 245.23

9 8 9.20 953 1445 382.8 220.28 1539 662.4 248.24 1411 687.2 250.72

10 9 6.20 4020 1703 325.6 220.76 1815 629.6 251.16 1691 656.0 253.80

11 10 ' 7.70 2444
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TABLE 4.2—SHOWING THE RESULTS OF THE CHARACTERISTIC-NUMBER OF PERSONS IN 1961 CENSUS

- 128 ?"= 3463, 5 = 2065, ^no =• 1797, = 301, diryTa) =• 218.30, = 1942, =• 277, cKf^) - 212.40

n r c„ yn yor ^(J'or) rftVo) yo ' s{yo) d(yo) y'r ^y'r) diTr)

1 1 11.30 925 925 925 _

2 2 5.90 1808 1366 509.8 168;08 1366 1465.8 263.68 1371 1470.9 264.19

3 2 11.20 . 925 . 1219 612.9, 189.59 1306 1199.2 248.22 981 1209.8 249.27

4 3 11.60 2740 1599 435.3 183.43 1824 1040.5 243.95 1384 1055.1 245.41

5 4 12.40 1757 1631 350.9 187.39 1807 937.5 245.55 1468 950.3 247.32

6 ; 5 9.00 1154 1551 352.7 196.57 1676 ' 352.9 246.59 1424 873.4 . 248.63

7 6 3.70 2768 ins 314.9 196.49 1858 791.2 244.11 1630 814.0 246.40

8 7 7.80 1021 1637 277.7 200.57 1739 - 741.5 246.95 1563 766.4 249.43

9 8 9.20 1223 1591 336.2 215.62 1674 .700.4 252.04 1535 727.2 254.71

10 9 6.20 3652 1797 386.2 218.82 1894 665.8 . 75A.n 1765 694.2 X15.62

11 10 7.70 2373
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TABLE 4.3—SHOWING THE RESULTS OF THE CHARACTERISTIC—NUMBER OF WORKERS
IN INDUSTRY IN 1961

N= 128,"7= 70, S = 94; ,7= 33.1, = 12.9, d(r}^D) = 189.49;Xo = 39.2, 5(j^o) = = 185.99.

n r Cji yor' '(yor) d(yor) yo ^(yo) d(yo) d(K)

1 1 11.20 1 18.15 20.2 — 1 — — 1 —

2, 2 5.90 36 • 18.5 20.2 119.12 18.5 ' 66.7 123J7 18.57 • 66.6 123.16

3 2 • 11.20 1 12.6 11.9 129.4 18.5 54.5 133.75 , 12.4 54.5 133.75

• 4 3 11.60 6 . n.o 24.4 142.3 14.3 47.3 ,144.63 10.8 47.4 144.64

5 4 12.40 100 28.8 18.9 154.1 35.7 42.4 156.54 ' 29.0 42.5 , 156.55

6 5 .9.00 24 28.0 - 20.4 163.3 33.4 38.8 165.18 28.0 38.9 ~ 165.15

7 6 3.70 107 39.3 17.9 166.7 . 45.7 . 36.0 168.60 ~28.3 36.1 . 168.61

8 7 7.80 5 35.0 ' . 16.1 174.4 39^8 . 33.7 176.17 40.0 33.9 176.19

9 8 9.20 - 0 41.1 14.4 183.4 34.9 37.8 185.18 35.8 . 32.0 185.20

10 , 9 6.20 51 33.1 13.1 189.4, 36.7 30.3 191.23 41.9 30.5 191.25

11 10 7.70 62
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TABLE 4.4-SHOWlNG THE RESULTS OF THE CHARACTERISTIC-CULTIVATED AREA IN 1961 CENSUS |

N= 1258 7= 1943, S= 1107; j(jilo) = 22l\ = 210,30; yu = 1230, jCj-io) = 199, d{yio) = 208.10
>-
n

U

%
o
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n
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n r C„ yn yor s(yor) yo J(j'o) d(yo) 3''; diy"r)

1
1 11.20 428 428 — — 428 — —

428

2 2 5.90 , 1314 871 511.5 160.65 871 785.8 195.68 . 874 788.9 195.99

3 2 11.20 428 723 364.5 164.75 571 642.8 192.58 585 649.1 193.22

4 3 11.60 ' '1328 874 259.1 - 165.81 1023 557.8 195.68 116 566.4 196.54

5 • 4 12.40 772 854 212.7 , 173.57 960 499.0 202.29 . 780 510.4 ' 203.54

6 . 5 9.00 509 796 354.0 196.70 870 457.2 207,01 739 469.3 208.23

7 6 3.70 2622 1057 299.4 194.94 1161 424.1 207.41 1019 437.5 , 208.75'

8 7 7.80 980 1047, 279.7 200.77 1136 397.5 212.55 1021 412.1 214.01

9 8 , 9.20 1881 1040 246.9 203.69 1229 375.4 219.54 1127 391.2 221.12

10 9 6.20 1053 1132 201.4 208.34 1209 356.9 223.69 1127 373.6 225.56

11 10 7.70 - 1414
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